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Extensional flows with viscous heating
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In this paper we investigate the role played by viscous heating in extensional flows of
viscous threads with temperature-dependent viscosity. We show that there exists an
interesting interplay between the effects of viscous heating, which accelerates thinning,
and inertia, which prevents pinch-off. We first consider steady drawing of a thread
that is fed through a fixed aperture at given speed and pulled with a constant force at
a fixed downstream location. For pulling forces above a critical value, we show that
inertialess solutions cannot exist and inertia is crucial in controlling the dynamics.
We also consider the unsteady stretching of a thread that is fixed at one end and
pulled with a constant force at the other end. In contrast to the case in which inertia
is neglected, the thread will always pinch at the end where the force is applied. Our
results show that viscous heating can have a profound effect on the final shape and
total extension at pinching.

1. Introduction
Viscous heating plays an important role in a number of applications and is

particularly relevant to the polymer processing industry. Many of the fluids used
in such applications have a viscosity that varies rapidly with temperature and this
can give rise to strong feedback effects that can lead to profound changes in the flow
structure. Pearson (1977) and Ockendon (1979) showed that viscous heating could
lead to plug flows in channels. In recent years there has been a renewed interest in
viscous heating as a number of authors have shown that its effects can dramatically
destabilize viscous flows (Al-Mubaiyedh, Sureshkumar & Khomani 2002; White &
Muller 2002). Vasilyev, Ten & Yuen (2001) have shown that viscous gravity currents
can propagate faster as a result of viscous heating. Costa & Macedonio (2005) have
shown that interesting secondary flows can be triggered in channel flows.

In this paper, we examine two distinct types of extensional flow that are motivated
by two specific examples. In both cases, we show that apparently weak viscous heating
can have a dramatic effect on the dynamics. The analysis that we present in this paper
is quite general and can be applied to a number of situations in which threads are
subjected to extensional forces.

The first type of flow is that of a thread that is fed into an apparatus at a fixed speed
and is pulled at a fixed downstream location. This is a widely used industrial method
to produce textile threads from polymeric materials and optical fibres from molten
glass. This type of fibre stretching has been very widely studied in the isothermal case
and we refer the reader to a comprehensive review by Denn (1980) for further details.
Matsumoto & Bogue (1978) conducted experiments with a material whose viscosity
varied rapidly with temperature. They found stretching was extremely unstable and
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noted that this sensitivity cannot be explained using a traditional isothermal analysis.
For high-speed optical fibre pulling, Yin & Jaluria (2000) showed that the heat
generated by viscous dissipation can become important in the regions in which
rapid thinning occurs, but their study focused on other factors that can affect the
manufacturing process. Simple order-of-magnitude estimates often indicate that the
effects of viscous heating are small, and to our knowledge the effect of viscous heating
in the pulling of viscous threads has received relatively little attention. In the extension
of threads, inertia is also frequently neglected, although it can become important in
some situations, as shown by Wilson (1988), Kaye (1991) and Stokes & Tuck (2004).
However, we show that even apparently very weak viscous heating effects can lead to
dramatic changes in the flow structure and, as a result, inertia becomes important. By
deriving exact solutions, we show that inertialess solutions can only exist for values
of the pulling force below a critical value. Beyond this critical value inertia cannot be
neglected since it is crucial in controlling the flow.

The second type of flow is that of a thread that is fixed at one end and pulled at
the other end with a fixed force. This type of flow is important in the production of
tapered glass fibres for optical microscopy (Gallacchi et al. 2001) and is an integral
part of the manufacture of glass microelectrodes (Huang et al. 2003). Here, a glass
tube is extended to form an electrode with the required tip size and shape. In the
latter stages of the pulling, the extensional velocity increases dramatically during
stretching, and can result in a large strain rate and significant viscous heating. If
inertia is neglected, we derive exact solutions and show that the location at which
pinching occurs is determined by the initial conditions. The total extension at pinching
is unbounded in the absence of viscous heating, but is finite for any non-zero rate
of viscous heating. If inertia is included, we show that the thread always pinches at
the location where the force is applied for both zero and non-zero viscous heating.
Nevertheless, viscous heating can have a dramatic effect on the final shape and the
total extension at pinching.

2. Model for thread pulling
We consider an axisymmetric thread with a cross-sectional area A′, velocity u′, and

temperature θ ′. We define x ′ as the distance along the thread measured from a fixed
reference point and t ′ as the time. We denote the density of the fluid as ρ, the specific
heat capacity as cp and the surface tension coefficient as γ . The thread is pulled by
an external force F , has characteristic cross-sectional area A0, length L, temperature
θ0, thermal conductivity k, emissivity α and viscosity µ0.

The viscosity of many of the materials used in such extensional flows can vary
dramatically with temperature. For example, the glass used to produce electrodes
typically requires a temperature change of order 50 K to cause a significant change in
the viscosity (Huang et al. 2003). We denote this characteristic temperature change as
Θ . Typical thermal expansion coefficients for glass and polymeric materials are of the
order of 10−5 K−1 (Encyclopedia Britannica; see also Scholze; 1990, § 3.2) and so for
temperature changes of order 50 K, the material can be approximated well as having
constant density. Moreover, for glass materials, the typical value of surface tension
is of order 0.1 kg s−2, whereas the coefficient describing the magnitude of changes in
surface tension with respect to temperature is of order 4 × 10−5 kg s−2 K−1 (Scholze,
1990, p. 327). Therefore, for temperature changes of order 50 K, we will also assume
that the surface tension coefficient is constant.
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For large aspect ratio, δ = A0/L
2 � 1, the governing equations for laminar,

axisymmetric and incompressible extensional flow have been derived by a number of
authors, see for example Forest, Zhou & Wang (2000), Yin & Jaluria (2000) and Fitt
et al. (2001). Using the natural scales

u′ = FL(3µ0A0)
−1u, A′ = A0A, x ′ = Lx, t ′ = 3µ0A0F

−1t, θ ′ = θ0 + Θθ,

the long-wavelength dimensionless equations representing the conservation of mass
and momentum are

At + (uA)x = 0, (2.1)
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where kb is the Boltzmann constant, and

H =
F

ρcpΘA0

, Pe =
L2Fρcp

kµ0A0

, C =
B

δPe
.

We will adopt the exponential viscosity law that, in dimensionless form, is given by

µ(θ) = exp(−θ). (2.4)

This viscosity law can give excellent agreement with experimental data for viscosity
variations in excess of five orders of magnitude (Huang et al. 2003). In dimensionless
form, the boundary condition at the location where the force is applied is given by

µAux + λA1/2 = 1. (2.5)

The parameter values can vary widely depending on the particular industrial
process, but we present order-of-magnitude estimates that are appropriate for optical
fibre tip production and electrode pulling (Gallacchi et al. 2001; Huang et al. 2003).
These are L ∼ 10−2 m, A0 ∼ 10−6 m, F ∼ 1 N, ρ ∼ 103 kgm−3, cp ∼ 103 JK−1 kg−1,
k ∼ 1Wm−1 k−1, kb = 5.7 × 10−8 Wm−2 K−4, θ0 ∼ 800 K, Θ ∼ 50 K, γ ∼ 10−1 kg s−2,
α ∼ 0.4, and µ0 ∼ 104 kgm s−1. These scales give B ∼ 10−1, δ ∼ 10−2, R ∼ 10−4,
λ ∼ 10−4, H ∼ 10−2, C ∼ 10−3 and Pe ∼ 104. Therefore, at first sight, inertia, surface
tension, viscous heating, radiative heat losses and axial conduction are all small and
this has led many authors to neglect all of these effects. However, one must take care
that these estimates are still appropriate if the thread becomes thin. For a fixed applied
force, (2.5) indicates that as A becomes small, ux can increase sufficiently that the
viscous stress µAux can have the same magnitude as the applied force. However, as A

becomes small the surface tension term λA1/2 must decrease in importance. Since the
surface tension is initially small, we are therefore justified in neglecting surface tension.
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Similarly, as A decreases, (2.3) and (2.5) show that the advective term increases as A−1

whereas the radiative cooling term increases more slowly as A−1/2. Therefore, as A

decreases, the radiative cooling becomes less important than the advection term and
we therefore neglect radiative cooling. The axial conduction can also be neglected as
it is small initially and remains small during stretching. In contrast, the values of H
and R are typically small, but if the thread thins significantly, we will show that the
effects of viscous heating and inertia will become important.

In the following, we will consider two related problems that share a number of
similar features. As described in § 1 the first problem is motivated by continuous
drawing with a constant feeding rate, whereas the second problem is motivated by the
unsteady extension of a thread. The first problem has steady states and these allow
us to gain important insights into the role of inertia in the second problem.

3. Steady drawing
We consider a device that feeds a cylindrical thread of viscous fluid through a fixed

aperture with cross-sectional area A0 at speed u0 of order 1 m s−1. At a position L

downstream a fixed force F is applied that stretches the thread.
The dimensionless equations are given by (2.1)–(2.3) with C = 0, λ = 0 and

Pe−1 = 0. The boundary condition at the exit, x = 1, is given by (2.5) with λ = 0. The
boundary conditions at the entry, x = 0, are A = 1, θ = 0 and Fu = 1, where

F =
FL

3µ0A0u0

(3.1)

measures the degree of thinning experienced by a constant-viscosity thread whilst it
remains in the domain. Small values of F imply that the thread passes through the
device sufficiently quickly that it is thinned weakly by the imposed force, whereas
large values of F imply that the thread will experience significant thinning.

If we consider steady states, the equation of conservation of mass can be integrated
along with the boundary conditions at x = 0 to yield

FuA = 1. (3.2)

Using (3.2) to eliminate A from the time-independent version of (2.2), integrating and
applying the boundary condition (2.5) at x = 1 yields

ux = µ−1u[F − R(u(1) − u)], (3.3)

where u(1) is the velocity at the exit which must be solved for. Substituting (3.3) into
the time-independent version of the heat equation (2.3) with C = 0 and Pe−1 = 0
yields

θx = µ−1Hu[F − R(u(1) − u)]2. (3.4)

Dividing (3.4) by (3.3), integrating and applying the boundary condition at x = 0
gives

θ = H
[
(F − Ru(1))(u − F−1) + 1

2
R(u2 − F−2)

]
. (3.5)

Substituting (2.4) and (3.5) into (3.3), integrating and applying the boundary condition
at x = 0 yields

∫ Fu

1

exp
(
−H

[
(1 − PDr )(v − 1) + 1

2
P(v2 − 1)

])
v[(1 − PDr ) + Pv]

dv = Fx, (3.6)
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Figure 1. Steady drawing. (a) The scaled draw ratio H(Dr − 1) vs. F for R = 0 for various
values of H. The dotted lines show the critical value of F above which no steady solutions
exist for R = 0. (b) The draw ratio vs. F on a log-log scale for H = 1 and various values of
R. The dashed-dotted lines represent the large-F asymptotic limit.

where Dr = u(1)/u(0) = Fu(1) is the draw ratio and

P ≡ RF−2 =
ρA0u

2
0

F
(3.7)

is the ratio of the flux of momentum from feeding to the stretching force. For the
parameter values used in § 2, F ∼ 0.3 and P ∼ 10−3. In order to evaluate the integrale
in (3.6) one needs to know Dr . This can be obtained by using the condition Fu = Dr

at x = 1 to obtain∫ Dr

1

exp
(
−H

[
(1 − PDr )(v − 1) + 1

2
P(v2 − 1)

])
v[(1 − PDr ) + Pv]

dv = F. (3.8)

For any parameter values this can be solved numerically for Dr using straightforward
quadrature and Newton–Raphson methods. However, since P is small we begin by
setting it to zero which corresponds to neglecting inertia. In this case, the integral
(3.6) can be computed without first computing Dr and the solution is given by

E1 (FHu) = E1(H) − Fe−Hx, (3.9)

where E1 is the exponential integral

E1(u) =

∫ ∞

u

e−v

v
dv. (3.10)

We can therefore obtain the draw ratio Dr as a function of F by solving

E1 (HDr ) = E1(H) − Fe−H. (3.11)

This is plotted in figure 1(a). We immediately see that as F approaches a critical
value from below, Dr tends to infinity. For values of F above the critical value, no
steady-state solutions exist. The critical value, Fc = eHE1(H) can be obtained by
letting Dr → ∞ in (3.11).

For sufficiently small F, the amount of stretching that can occur before material
elements exit the device is small. Therefore the heat generated by viscous heating will
only weakly affect the viscosity and solutions will be close to the isothermal case. As
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Figure 2. The cross-sectional area and temperature profiles for R = 0.01 and F = 2 and
various values of H.

F is increased, the amount of stretching increases and causes extra viscous heating
which makes the viscosity decrease and hence reduces the resistance to stretching.
This allows more stretching to occur which generates more heat and so can lead to a
runaway effect.

When H → 0, the critical value Fc → ∞ and so the runaway phenomenon
disappears. However, we note that as H → 0 the critical value of F tends to infinity
very slowly as Fc = O(ln(1/H)). Therefore, even apparently very small values of the
parameter H can still give rise to this runaway phenomenon at relatively moderate
values of F.

In practice such runaway effects will be saturated in one of two ways: either the
temperature will increase sufficiently that the exponential viscosity law (2.4) will not
be valid or alternatively inertia will become important. In this paper we will focus on
the role of inertia, since treatment of the former case is straightforward.

In figure 1(b) we present the results of numerical integration of (3.8) that show how
inertia modifies the dynamics. When F is below the critical value, inertia plays a weak
role in modifying the draw ratio. For values of F above the critical value, inertia
becomes crucial. The draw ratio is an increasing function of F, and Dr → F2/R as
F → ∞. This corresponds to the case in which the thermal runaway is very strong
and so the viscous resistance to stretching is small. In this case, the draw ratio is
inertially controlled. In figure 2 we present the cross-sectional area and temperature
profiles for a fixed value of F, a fixed small value of R and varying values of H. As
the heating rate increases, the critical value of F = Fc, for which inertialess solutions
can exist, decreases. When the heating rate is small (H = 0.1), inertialess solutions
can exist and are similar to the H = 0 situation with slightly increased thinning due
to the viscous heat generation. However, for the sufficiently large values of H = 1
or 5, inertialess solutions do not exist. In this case, the solutions thin very rapidly
near the exit and experience much weaker thinning over the bulk of the thread. The
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role of inertia can be understood by considering equation (3.3). This equation shows
how the effective pulling force, which we define to be F − R(u(1) − u), is reduced by
inertia. At the exit of the device the force is prescribed. Near the exit, u is close to
u(1), and so inertia plays a weak role. Since viscous heating can lead to very small
values of the viscosity, very rapid thinning can occur near the exit. On moving away
from the exit, part of the force is required to accelerate the thread. This reduces the
effective force on moving away from the exit and thus leads to weaker thinning in
the bulk.

4. Extension of thread with fixed force
We now turn our attention to the case of a thread that is fixed at one end and

pulled with a constant force at the other end. As shown in Stokes & Tuck (2004),
the system of equations becomes significantly simpler if expressed in Lagrangian
coordinates (ξ , τ ). The relationship between the Eulerian coordinates (x, t) and the
Lagrangian coordinates (X, τ ) is given by τ = t and Xτ = u. This implies that the
Lagrangian variable X is the spatial coordinate of a material point that was at the
location x = ξ at the initial time τ = 0.

In Lagrangian coordinates, (2.1) becomes (AXξ )τ = 0. Integrating and applying the
initial conditions A(ξ, 0) = Ai(ξ ) and X(ξ, 0) = ξ , gives Xξ = Ai/A, and the total
extension of the thread at time τ is given by

X(1, τ ) =

∫ 1

0

Ai(ξ )

A(ξ, τ )
dξ. (4.1)

Equations (2.1)–(2.3) with C = 0 and Pe−1 = 0 become

Aτ = −A2uξ

Ai

, (4.2)

RAiuτ =

[
µA2uξ

Ai

]
ξ

, (4.3)

θτ = H
µ(θ)A2u2

ξ

A2
i

. (4.4)

The boundary conditions are u = 0 at ξ = 0 and µA2uξ/Ai = 1 at ξ = 1. The initial
conditions are u = 0, θ = θi(ξ ) and A = Ai(ξ ) at τ = 0.

4.1. Zero viscous heating

If we neglect both viscous heating and inertia, then equations (4.2)–(4.4) can readily
be solved to obtain

A = Ai(ξ ) − τ/µi(ξ ). (4.5)

Therefore, pinching occurs at τp = minξ {µiAi} at the location ξ = ξp . Since we
are using the long-wavelength approximation we will assume that Ai and θi have
continuous second derivatives. If the thread does not pinch at one of the end points,
that is ξp ∈ (0, 1), then since ξp is a minimum of µiAi , we have (µiAi)

′|ξp
= 0

and generically, (µiAi)
′′|ξp

> 0. Therefore, as time approaches the pinching time, the
total extension is dominated by the contribution to the integral (4.1) near ξ = ξp .
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Figure 3. Stretching without viscous heating (H = 0). (a) The cross-sectional area vs. x at
various times for R = 0.1. Pinching occurs at the end point at τ = 1. (b) The minimum area
vs. time for various values of R. The dotted line represents the area at the end point. The
initial condition is given by (4.8) with K = 10.

Asymptotically, we obtain

X(1, τ ) ∼
√

2πτp√
(µiAi)′′|ξp

(τp − τ )
. (4.6)

If the thread pinches at one of the end points a similar calculation shows that,
generically,

X(1, τ ) ∼
∣∣∣∣τp ln(τp − τ )

(µiAi)′|ξp

∣∣∣∣ . (4.7)

In both cases, the total extension of the thread tends to infinity as the pinching time is
approached. As the area tends to zero, the velocity tends to infinity and so we expect
inertial terms to become important. When inertial terms are retained we were unable
to obtain a general analytic solution, but an exact solution can be obtained for the
area at the end at which the force is applied. This is because the force is prescribed
at the end and so the inertial terms do not reduce the effective pulling force. Hence,
(4.2) can be used to rewrite the applied force boundary condition as Aτ = −1/µi(1)
at ξ = 1. Integrating with respect to τ and applying the initial condition we obtain
A(1, τ ) = Ai(1) − τ/µi(1). Results obtained using a standard explicit time-stepping
technique are shown in figure 3(a). For the examples presented in this paper we take
the simple initial condition given by

θi = 0, Ai =
1

1 + K
(

1
2

)2
+

K
(
ξ − 1

2

)2

1 + K
(
ξ − 1

2

)2
(4.8)

that is symmetric about ξ = 1/2 and has unit area at the end points ξ = 0 and ξ = 1.
We note that other initial conditions give similar behaviour. Although in applications,
R is typically of the order of 10−4, for purposes of visualization, we use somewhat
larger values of R.

If R is small, then initially the inertial correction to the effective pulling force
is small and so the solution will be approximated well by (4.5). Therefore, the area
decreases at an approximately uniform rate at all x locations. However, when the area
becomes small the inertial terms become important. Our numerical results show that
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inertia prevents pinching in the middle of the thread and the thread always pinches at
the end point where the force is applied. The area remains bounded away from zero
everywhere except at the end point, so the total extension (4.1) can diverge only if the
contribution from the neighbourhood of ξ = 1 diverges. In order to investigate the
local behaviour one can consider the similarity solution of the form A = A(1, τ )a(η),
where η = (1 − ξ )Ai(1)R1/2/[µi(1)A(1, τ )3/2]. Then, at leading order equations (4.2)–
(4.4) give 2a2a′′ − 3ηa′ + 2a = 0 with boundary conditions a(0) = 1 and a′(∞) = 0.
This similarity solution remains bounded away from zero and so the contribution to
(4.1) near ξ = 1 is of order µi(1)R−1/2A(1, τ )1/2. So near pinching, A(1, τ ) → 0, the
extension will remain finite.

In figure 3(b) we show the result of pulling a thread that has an initial profile given
by (4.8). We plot the minimum area and the area at the end of the thread against
time for different values of R. For R = 0 the thread pinches in the middle, whereas
for R 
= 0 the area in the middle thins to a small value, but is ultimately overtaken
by the value at the end point. The thread pinches at the end point in a finite time.

4.2. The role of viscous heating

We now consider the effects of viscous heating on the pulled thread. Initially the
inertial terms are small and therefore we neglect them. Equation (4.3) can be integrated
to give

µA2uξ = Ai. (4.9)

We can therefore eliminate u from equations (4.2) and (4.4) to obtain

µAτ = −1, (4.10)

µA2θτ = H. (4.11)

Dividing (4.11) by (4.10), integrating and applying the initial condition yields

θ − θi = H
(
A−1 − A−1

i

)
. (4.12)

Substituting into (4.10), integrating and using the initial condition gives

A

He−H/A − E1

(
H
A

)
= −e−H/Ai+θi

τ

H +
Ai

He−H/Ai − E1

(
H
Ai

)
. (4.13)

The solution is shown in figure 4(a). One can clearly see that the viscous heating
leads the pinching to become highly localized.

The cross-sectional area A will go to zero at time

τp = min
ξ

{
e−θi

[
Ai − HeH/AiE1

(
H
Ai

)]}
. (4.14)

When the thread is close to pinching, that is A � 1, (4.13) can be approximated by

A2

He−H/A = e−H/Ai+θi (τp − τ ). (4.15)

We can therefore see that A → 0 as −H/ ln(τp − τ ) as τ → τp . In this case, in order
to determine the total extension of the thread we define

p(ξ ) = e−θi

[
Ai − HeH/AiE1

(
H
Ai

)]
. (4.16)
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Figure 4. Pulling with viscous heating (H = 1). The cross-sectional area vs. x for various
values of the time for (a) R = 0 which pinches in the middle and (b) R = 10−2 which pinches
at the end point. The initial condition is given by (4.8) with K = 10.

If ξp ∈ (0, 1), then, since ξp is a minimum, we have p′(ξp) = 0 and so p(ξ ) =
τp + 1

2
p′′(ξp)(ξ − ξp)2 + O((ξ − ξp)3). At τ = τp (4.15) becomes

A2

He−H/A = 1
2
e−H/Ai (ξp)+θi (ξp)p′′(ξp)(ξ − ξp)2 + O((ξ − ξp)3). (4.17)

Therefore

A → H
2 ln |ξ − ξp| as ξ → ξp (4.18)

and the contribution to the extension (4.1) from the region that is close to the pinching
point is integrable. A similar result can be obtained if ξp is located at one of the end
points. Hence, the total extension will be finite even at pinching.

However, as the area tends to zero the velocity tends to infinity and so inertial terms
will become important. The solution of (4.2)–(4.4) with non-zero inertia is shown in
figure 4(b). Initially, the thread thins approximately uniformly until the minimum
area becomes sufficiently small that inertia is important and prevents the thread from
pinching at this location. As in the case without viscous heating, the inertia does
not affect the end point and the area at the end point satisfies (4.13). Therefore, the
thread will pinch at the end point at time

τp = e−θi (1)

[
Ai(1) − HeH/Ai(1)E1

(
H

Ai(1)

)]
.

Using a similar calculation to that for H = 0, we can see that the total extension will
remain finite.

In figure 5 we show the result of pulling a thread that has an initial profile given by
(4.8). We plot the minimum area and the area at the end of the thread against time
for two different values of R and various values of H. For the case with the larger
inertia (R = 1), the inertial effects prevent significant stretching in the middle of the
thread and so the viscous heating plays a weak role. Ultimately, the thread will pinch
at the end point where the inertia does not play a role and so viscous heating effects
are important. For the case with weaker inertia (R = 0.1), significant stretching occurs
and initially cases with large viscous heating thin much more rapidly than those with
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Figure 5. The minimum cross-sectional area vs. time for various values of H for (a) R = 1
and (b) R = 0.1. The initial condition is given by (4.8) with K = 10. The dotted line represents
the cross-sectional area at the end point.

weak viscous heating. Ultimately, the thread will also pinch at the end point, but the
thinning in the bulk is much greater than that for R = 1.

5. Discussion
We have considered the role played by viscous heating in controlling extensional

flows of viscous threads. We have shown that even small amounts of viscous heating
can lead to fundamental changes in the dynamics. For steady drawing, we have
derived exact solutions for the case of zero inertia and have shown that there exists a
critical pulling force above which inertialess solutions cannot exist. For pulling forces
exceeding the critical value, the inclusion of inertia gives solutions that thin weakly
over the bulk of the thread, but thin rapidly in a narrow region near the location
where the pulling force is applied.

For an extending thread with zero inertia, we have derived exact solutions and
shown that the total extension at pinching is infinite when viscous heating is neglected,
but is finite when viscous heating is included. The location of pinch-off depends on the
initial condition. However, if inertia is present, no matter how small, it will eventually
become important and the thread will always pinch at the end where the force is
applied. In all cases, viscous heating has a profound effect on the profile and can lead
to very rapid thinning in the bulk of the thread.
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